Drivteknik.nu

 

Hem / Inköp / Livscykelkostnad

Beräkna Livscykelkostnad - LCC

källa : energihandbok.se

När man jämför olika investeringsalternativ är det praktiskt att jämföra de olika LCC-värdena.

Andra metoder man kan använda är att utgå från antalet år som behövs för att investeringen ska betala sig, eller att räkna ut avkastningen på det investerade kapitalet i procent.

Båda dessa metoder kräver dock att man beräknar skillnaden i kostnad under utrustningens livslängd, även om detta ofta förenklas genom att man beaktar ett enda år.

Fördelarna med LCC är att man tar hänsyn till hela kostnaden och att de olika delarna i kostnaden är lätta att jämföra. Det är enkelt att se hur stor den initiala investeringskostnaden är jämfört med de andra årliga kostnadsdelarna.

De kostnader som man uppskattar för de olika delar som tillsammans utgör den totala livscykelkostnaden måste räknas samman, så att man kan jämföra de olika utrustningsalternativ som man överväger. Detta görs enklast genom att använda en mall, ett beräkningsverktyg, som fångar upp de kostnader som skall tas hänsyn till och frågar efter ett värde att skriva in. Kostnaden kan enkelt summeras år för år för att få fram ett totalvärde, eller också kan man ta hänsyn till inflationen och räntan och hänvisa till ett visst år. Det brukar då handla om det år då utrustningen installeras.

LCC = summan av (Cic + Cin + Ce + Co + Cm + Cs + Cenv + Cd)

där
C = kostnadskomponent
ic = initialkostnaden, inköpspriset för utrustningen
in = installations- och driftsättningskostnader (inbegripet utbildning)
e = energikostnader (förväntad kostnad för drift av systemet)
o = driftskostnad (arbetskraftskostnaden för normal övervakning av systemet)
m = underhålls- och reparationskostnad (rutinmässiga och förväntade reparationer)
s = kostnad för stilleståndstid (produktionsbortfall)
env = miljökostnad (förorening som orsakas av utrustningen)
d = kostnad för urdrifttagande/bortskaffande (inbegripet återställande av närmiljön och bortskaffande av hjälputrustning).

När man fastställer energikostnaderna måste man om möjligt ta hänsyn till effekterna av fasta avgifter, energiavgifter, straffavgifter för behov av reaktiv energi osv. Man måste även ta hänsyn till motsvarande faktorer när det gäller andra energiformer än elektricitet.

Dessutom måste användaren bestämma vilka kostnader som ska tas med – exempelvis underhållskostnader, kostnader för stilleståndstid, miljökostnader, bortskaffningskostnader och andra viktiga kostnader.

Dessutom finns det vissa ekonomiska faktorer som måste beaktas om man väljer att diskontera kostnaderna till ett visst år, bland annat följande:

Rådande energipris

  • Förväntad årlig ökning av energipriset (inflation) under livslängden
  • Kalkylränta
  • Låneränta
  • Förväntad livslängd för utrustningen (beräkningsperiod)

 

Inflation

Inflation minskar pengars köpkraft över tiden; deflation ökar köpkraften. För att man ska kunna göra en meningsfull jämförelse mellan kostnader som uppstår vid olika tidpunkter, måste man justera beloppen utifrån förändringar i köpkraften. Att justera kostnader från löpande till fasta priser är inte detsamma som att diskontera framtida kostnader till nuvärdet. Organisationen/verksamheten brukar ha tabeller över prognostiserade värden på inflationen som de använder i samband med kapitalinvesteringsprojekt.

 

Kalkylränta/låneränta

Kalkylräntan är en särskild räntesats som gör det möjligt för en investerare att bortse från skillnaden mellan kontanta belopp som inflyter vid olika tidpunkter. Det innebär att investeraren kan konstatera att ett visst belopp som inflyter tidigare är likvärdigt med ett annat belopp som inflyter senare.

Projektkostnader som inträffar vid olika tidpunkter under den period man studerar kan inte kombineras direkt när man beräknar en livscykelkostnad, eftersom pengar som betalas vid olika tidpunkter är olika mycket värda för investeraren. Observera att en real kalkylränta (exklusive allmän inflation) används för belopp i fasta priser medan en nominell kalkylränta (inklusive allmän inflation) används för belopp i löpande priser.

Vilken kalkylränta en viss investerare tillämpar bestäms i allmänhet av den lägsta avkastning som är acceptabel för den investeraren. Den lämpliga kalkylräntan  varierar från en investerare till en annan.

När man beräknar nuvärdet använder man oftast en real kalkylränta.

 

Diskontering av kostnader med nuvärdesmetoden (PV - Present Value)

Pengar som används vid en viss tidpunkt i framtiden har inte samma värde som motsvarande belopp som används i dag. Vissa kostnader uppkommer regelbundet varje år (t.ex. kostnader för energi och rutinunderhåll). Andra kostnader som uppkommer ofta men inte varje år kan räknas om till genomsnittliga årskostnader (t.ex. byte av mekaniska tätningar). Sedan finns det kostnader (extraordinära kostnader) som uppkommer så sällan att de måste behandlas som enskilda kostnadskomponenter och inte kan räknas om till genomsnittsvärden (t.ex. större ombyggnader och kostnader för bortskaffande vid slutet av systemets livslängd).

Som visas nedan behandlas den sistnämnda kategorin av kostnader annorlunda:

A. Enskilda kostnadskomponenter

För att beräkna nuvärdet (PV) om det finns extraordinära kostnader lägger man ihop de olika kostnadskomponenterna.

Nukostnaden (Cp) för en viss kostnadskomponent (Cn) som betalas efter (n) år kan approximativt beräknas på följande sätt:

där
n = antalet år i siffror
p = den förväntade inflationen (prisökningen) per enhet
i = låneräntan per enhet
i – p = den reala kalkylräntan per enhet
Cn = den kostnad som betalas efter n år
Cp = nukostnaden för en enskild kostnadskomponent, Cn

Nuvärdesfaktorn, Cp/Cn, visas i en tabell som funktion av den reala kalkylräntan och antalet år.

B. Årliga kostnadskomponenter

För att beräkna nuvärdet (PV) multiplicerar man helt enkelt nusummefaktorn df med årskostnaden Ca.
PV = df × Ca

En nusummefaktor (df) bygger på totalsumman för nettonuvärdet över de (n) åren. Denna faktor är mycket användbar när man gör enkla beräkningar där de årliga utgifterna är konstanta. I dessa förenklade modeller antas skillnaden mellan låneräntan (i) och inflationen (prisökningen) (p) vara konstant under utrustningens livslängd, och de kombineras till en real kalkylränta (i – p). Om man vill ha större precision i beräkningen räknar man upp årskostnaderna för varje år med inflationen och diskonterar sedan de resulterande kostnadsuppgifterna.

Nusummefaktorn i tabellform som funktion av den reala kalkylräntan och antalet år.

 

År / ränta 4% 6% 8% 10% 12% 15% 20%
2 1,89 1,83 1,78 1,74 1,69 1,63 1,53
3 2,78 2,67 2,58 2,49 2,40 2,28 2,11
4 3,63 3,47 3,31 3,17 3,04 2,85 2,59
5 4,45 4,21 3,99 3,79 3,60 3,35 2,99
6 5,24 4,92 4,62 4,36 4,11 3,78 3,33
7 6,00 5,58 5,21 4,87 4,56 4,16 3,60
8 6,73 6,21 5,75 5,33 4,97 4,49 3,84
9 7,44 6,80 6,25 5,76 5,33 4,77 4,03
10 8,11 7,36 6,71 6,14 5,65 5,02 4,19
12 9,39 8,38 7,54 6,81 6,19 5,42 4,44
15 11,12 9,71 8,56 7,61 6,81 5.85 4,68
20 13,59 11,47 8,82 8,51 7.47 6,26 4,87

 

 

 

 

 
 

Copyright © Drivteknik.nu 2007-2018. All rights reserved